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1. INTRODUCTION

One of the classical problems in univariate trigonometric polynomial
(t.p.) approximation is the relationship between smoothness properties of a
2?-periodic function f # Lp(T), 1� p��, T :=[&?, ?], and the degree of
the error En( f )p of the best approximation by t.p. of order <n. The well-
known direct and inverse theorem on this approximation states that En( f )p

has a degree not greater than n&:, :>0, if and only if f possesses the
Ho� lder fractional smoothness :, i.e., for some nonnegative integer ;<:
and natural number r>:&;, the quasinorm

| f |H:
p

:=sup
$>0

|r( f (;), $)p�$:&;

is finite, where |r( f, } )p is the r th modulus of smoothness in Lp(T) (cf., e.g.,
[11]). This theorem describes the quasinorm equivalence

| f |H:
p
r | f | E

:
p
, (1)
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where for f # Lp(T)

| f | E
:
p
:=sup

n # N

En( f )p�n:.

Here and later, the statement F1 rF2 means that F1 <<F2 and F2 <<F1 ,
and the statement F1 <<F2 means that F1�CF2 with absolute constant C.

The situation is much more complicated in multivariate t.p. approxima-
tion on the d-dimensional torus Td :=[&?, ?]d, because of the various
possibilities for restricting the frequencies of t.p., and because multivariate
functions can have very different and very complicated smoothness proper-
ties. Therefore, in multivariate t.p. approximations of smooth functions, we
must first define a multivariate smoothness and then understand what
frequency domain should be optimally selected for approximation of
functions from the space of this common smoothness. The optimality of
selection usually means that the corresponding approximation should give
the degree of the widths or some other approximation characterizations of
the unit ball of this space. Well-known function spaces of common smooth-
ness are the isotropical and anisotropical Sobolev, Ho� lder, and Besov
spaces. (Ho� lder spaces, although a subset of Besov spaces, are mentioned
for their important place in t.p. approximations.) For these isotropical and
anisotropical spaces the optimal frequency domains for t.p. approximation
are d-balls and d-parallelepipeds, respectively. Moreover, the common
smoothness of the Ho� lder and Besov spaces, which is defined on the
basis of multivariate higher-order moduli of smoothness, and partial
higher-order moduli of smoothness completely describes the smoothness
properties governing the corresponding rate of the error of the best
approximation by t.p. with frequencies from d-balls or d-parallelepipeds, in
terms of quasinorm equivalence of type (1) of these spaces. This is a basic
idea in the embedding theorems studied by Nikol'skii, Besov, and others.
We refer the reader to [11] for a detailed description of this direction.

From the point of view of multivariate t.p. approximation the smooth-
ness of the Ho� lder and Besov spaces and the frequency domains d-balls and
d-parallelepipeds are rather simple, and the corresponding quasinorm
equivalence theorems can be considered as direct generalizations of the
univariate ones. More complicated anisotropical smoothness properties are
the mixed Sobolev smoothness A of the space W A

p of all functions f on Td

with Lp(Td)-bounded mixed derivatives in the sense of Weil f (:) for all
: # A, the mixed Ho� lder smoothness A and the mixed Besov smoothness A
of the spaces H A

p and BA
p, q of all functions f on Td with the finite

quasinorms | f |H :
p

and | f |B :
p, q

, respectively, for all : # A, where A is a finite
subset of Rd

+ :=[x # Rd : xj�0]. The quasinorms | f | H :
p

and | f |B :
p, q

are
defined in terms of mixed higher-order moduli of smoothness or, equiv-
alently, mixed higher-order differences (cf., e.g., [5, 10, 13] for definitions).
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The optimal frequency domain for these smoothness are so-called hyper-
bolic crosses (h.c.). Approximation by t.p. with frequencies from h.c. (h.c.
approximations) of functions with mixed smoothness was pioneered by
Babenko and the first important results were obtained by Mityagin [9]
and Teljakovskii [12]. The reader can consult [5, 13] for detailed surveys
on these and related problems. Because of the optimality of h.c. for mixed
smoothness, it is of great interest to characterize the smoothness properties
which guarantee a preassigned degree of the error in h.c. approximation. In
order to formulate the setting of the problem, let us give some necessary
definitions.

For a subset 1 of Zd, wet let P(1) denote the Lp(Td)-closure, 1� p��,
of the span of the harmonics ek , k # 1, where ek(x) :=ei(k, x), x # Rd. Let A
be a finite subset of Rd

+. We will treat the approximation by t.p. with
frequencies from h.c. 1A(t) which is defined by

1A(t) :={k # Zd : `
j # J:

|kj |
:j<t, : # A= , t>0

where J: :=[ j : 1� j�d ; :j {0]. We will use the abbreviated notation
PA

t :=P(1A(t)). We let

E A
t ( f )p := inf

g # P t
A

& f& g&p (2)

denote the error in the best Lp(Td)-approximation of f # Lp(Td) by
elements from PA

t , where as usual & }&p is the p-integral norm of Lp(Td)
with the change to the sup-norm when p=�. The most important case of
h.c. approximation (2) is that where 1A(t) is a finite subset of Zd for each
t>0; i.e., the subspace PA

t consists of all t.p. with frequencies from the h.c.
1A(t). This occurs if and only if

a= j # A, j=1, ..., d, for some a>0,

where =1=(1, 0, ..., 0), =2=(0, 1, 0, ..., 0), ..., =d=(0, ..., 0, 1) are the unit
vectors in Rd. However, we would like to emphasize that the results of the
present paper will be stated without any requirement on finiteness of 1A(t).

We are interested in a characterization of the smoothness properties of
f which give a preassigned degree of E A

t ( f )p . We let 8 denote the set of all
functions . # C([0, 1]) such that .(x)>0 for x>0, .(0)=0, and . is
nondecreasing on [0, {] with some 0<{�1. The degrees of E A

t ( f )p , which
we will consider, are of the form .(1�t) for . # 8 satisfying certain
conditions of regularity (see Conditions (BS) and (Z%) below). Such typical
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degrees are functions t&a logb t with some a>0 and b # R which appear in
h.c. approximations of functions with finite mixed smoothness. Thus,
from previous works concerning direct inequalities on h.c. approximations
(cf. [5, 13] for details) we know that for 1<p<� the degree of E A

t ( f )p

on the unit ball of W A
p is t&1, and the degree of E B

t ( f )p on the unit ball
of H A

p is t&1 log&�p* t with some nonnegative integer &<d, where p* :=
min( p, 2), and B is a certain finite subset of Zd

+ constructed from A.
A similar result is also valid for BA

p, q (see [5, 6]). Unfortunately, the
smoothness of H A

p and BA
p, q cannot characterize the smoothness properties

for the corresponding degrees of the h.c. approximations E A
t ( f )p and

EB
t ( f )p .
Let us introduce spaces of functions with common degree of their error

of h.c. approximation. If . # 8 and 0<q��, we let EA, .
p, q denote the space

of all functions f # Lp(Td) such that the quasinorm

| f | Ep, q
A, . :={\

:
�

n=0

[E A
2n( f )p�.(2&n)]q+

1�q

,

sup
0�n<�

[E A
2n( f )p�.(2&n)],

q<�

q=�,

is finite.
The aim of the present paper is to give a characterization of the smooth-

ness properties of EA, .
p, q , in terms of quasinorm equivalence theorems for

Ho� lder-and Besov-type spaces. The most essential and difficult aspect of
characterizing these smoothness properties is to introduce a suitable new
modulus of smoothness in the definition of the corresponding Besov space.
This problem was solved by DeVore et al. [4] for a single symmetric h.c.,
1<p<�, and .(t)=ta, a>0, by using new moduli of smoothness based
on the d&1 dimensional integral of the convolution of higher-order mixed
differences of functions with B-splines. Another characterization of the
smoothness of EA, .

p, q for the case where 1<p<�, .(t)=ta, a>0, and A is
an arbitrary finite set, by introducing ``moduli of smoothness'' of functions
with the help of convolutions of functions with certain distributions, was
given in [7]. However, these last ones are not explicit nor are they moduli
of smoothness in the traditional sense. In this paper we will introduce new
moduli of smoothness for characterizing smoothness of EA, .

p, q .
This paper is organized as follows. In Section 2 we introduce new

moduli of smoothness and formulate the main results of the paper. In
Section 3 we recall the Littlewood�Paley theorem and a modification of the
Marcinkiewicz multiplier theorem which are the tools in the proofs of our
results. We also obtain a series of auxiliary results to be used in these
proofs. The proofs of the main results are given in Section 4.
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2. MAIN RESULTS

We first give definitions of new moduli of smoothness. We motivate these
definitions as follows. For a nonnegative integer r, the univariate difference
operator 2r

h , h # T, is defined inductively by 2r
h :=21

h2r&1
h , starting from

the operators

20
h f :=f; 21

h f :=f ( } +h�2)& f ( } &h�2).

For ; # Z, the univariate operator I ;
h , h # T, is defined in the same way,

starting from the operators

I 0
h f :=f; I 1

h f :=h&1g; I &1
h f =h

�f
�x

,

where g is the primitive with zero mean value of f, i.e.,

�g
�x

= f, |
?

&?
g(x) dx=0.

For a nonnegative integer r and ; # Z, let us introduce the modulus of
smoothness |r, ;( f, $)p , $>0, for f # Lp(T) by

|r, ;( f, $)p := sup
|h|�$

&2r
hI ;

h f &p .

If ;<0 and s=&;, then |r, ;( f, } )p coincides with the classical r th
modulus of smoothness |r( f (s), } )p of the s th derivative of f multiplied by
$s. One can prove that for f # Lp(T), 1� p��, En( f )p has order not
greater than n&: if and only if |r, ;( f, $)p�C$: for some integers ; and r
such that r>:+;>0 (in the case where ;�0 this is equivalent to the
classical direct and inverse theorem), and, therefore, there hold the
quasinorm equivalences

| f |H:
p
r | f | E

:
p
rsup

$>0

|r, ;( f, $)p �$:.

This means that the Ho� lder fractional smoothness : which governs the
degree n&: of En( f )p can be defined by finiteness of the quasinorm on the
right-hand side of the last quasinorm equivalences. There hold similar
quasinorm equivalences for Besov spaces. Based on this fact, our definition
of new moduli of smoothness will be a generalization of |r, ;( f, } )p .

For r # Zd
+ :=[k # Zd : kj�0], we let the multivariate mixed r th dif-

ference operator 2r
h , h # Td, be defined by

2r
h f :=2r1

h1
2r2

h2
} } } 2rd

hd
f,
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where the univariate operator 2rj
hj

is applied to the variable xj . For ; # Zd,
the multivariate mixed operator I ;

h , h # Td, is defined similarly. While the
t.p. approximation is related to the traditional Ho� lder and Besov spaces,
the direct generalization of |r, ;( f, $)p based on the mixed operator 2r

h and
I ;

h does not give a desirable definition of smoothness for the h.c.
approximation E A

t ( f )p . The definition of the new moduli of smoothness in
[4] is motivated by a similar argument. In our definition, we will first take
the integral of 2r

h I ;
h f over the augmented $V:(t) :=V:(t)"V:(t�2) of the

hyperbolic neighborhood of the origin of coordinates V:(t), : # Rd
+ , which

is defined by

V:(t)={h # Td : hj>0, `
j # J:

h:j
j <2t= , t>0.

For a triple #=(:, r, ;) # Rd
+_Zd

+_Zd, the operator D#
t is defined by

D#
t f :=|

$V: (t)
2r

hI ;
h f `

j # J:

h&1
j dh.

We define the modulus of smoothness 0#( f, $)p , $�0, by

0#( f, $)p :=sup
t�$

&D#
t f &p

and for a finite subset G of Rd
+ _Zd

+ _Zd, the modulus of smoothness
0G( f, $)p by

0G( f, $)p := :
# # G

0#( f, $)p .

We will later see that the modulus of smoothness 0G( f, $)p is directly
related to the h.c. 1A(t), where A=[: : (:, r, ;) # G]. Note that for #=
(:, r, ;) with rj�;j the definition of the operator D#

t coincides with that
which is given in [8]. We now define Besov spaces of common smoothness.
If . # 8 and 0<q��, we let BG, .

p, q denote the Besov space of all functions
f # Lp(T

d) such that the quasinorm

| f |Bp, q
G, . :={\

:
�

n=0

[0G( f, 2&n)p �.(2&n)]q+
1�q

,

sup
0�n<�

[0G( f, 2&n)p�.(2&n)],

q<�

q=�,

is finite.
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Let us compare moduli of smoothness 0G( f, } )p with partial moduli of
smoothness. Denote by |s

j( f, } )p the s th partial modulus of smoothness of
the variable xj , (see, e.g., [11] for a definition). Then for any #=(:, r, ;)
with J:=Jr=J;=[ j], :j=1 and rj&;j=s, there holds the inequality

0#( f, $)p <<|s
j( f, $)p , 1� p��,

for f # Lp(Td). Moreover, by well-known methods, one can prove that
|s

j( f, } )p can be substituted by such a 0#( f, } )p in the corresponding
quasinorm equivalence theorem for the anisotropical Ho� lder and Besov
spaces.

We will require some conditions of regularity on .. Namely, we say that
. # 8 satisfies Condition (BS) if

|
t

0
.(x)

dx
x

<<.(t),

and Condition (Z%), %>0, if

|
1

t
.(x) x&% dx

x
<<.(t) t&%.

We will need also some restriction on the set G for 0G( f, } )p . We say
that the set G satisfies Condition (R) if J:=Jr=J; and 1<;j<rj , j # J: ,
for all #=(:, r, ;) # G. The moduli of smoothness 0#( f, } )p with # satisfying
Condition (R) have a nice property. Namely, the multiplier coefficients of
the related operators D#

t give a satisfactory rate of convergence for the
application of the multiplier Marcinkiewicz theorem in the proofs of direct
and inverse inequalities on h.c. approximations (Theorem 1).

Finally, let us introduce some quantities related to mixed smoothness
and h.c. approximation. For G satisfying Condition (R), we define \(G) :=
min[\(r&;, :): (:, r, ;) # G] and &(G) :=max[&(r&;, :) : (:, r, ;) # G,
\(r&;, :)=\(G)], where \(x, y) :=min[xj�yj : j # Jy] and &(x, y) denote
the number of j # Jy such that xj�yj=\(x, y). The number \(G) can be
interpreted as the ``order'' of 0G( f, } )p . The number &(G)&1 appears in
degrees of h.c. approximations for classes of functions with mixed smooth-
ness (cf., e.g., [5, 13]).

Denote by card 1 the cardinality of a set 1. Let us now formulate direct
and inverse inequalities on the h.c. approximation (2).

Theorem 1. Let 1<p<�, 0<q��, and A be a finite subset of Rd
+ .

Then for any %>0 and any natural number &�max[card J: : : # A], we can
construct a finite subset G of Rd

+_2Zd
+_Zd

+ such that
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(i) A=[: : (:, r, ;) # G],

(ii) G satisfies Condition (R),

(iii) \=\(G)�%,

(iv) &(G)=&.

Moreover, if G is such a set and f # Lp(Td), then there holds the direct
inequality of weak form

E A
2n( f )p <<\ :

�

m=n+1

[0G( f, 2&m)p] p*+
1�p*

(3)

for any nonnegative integer n whenever the right-hand side is finite. In
addition we have the inverse inequality

0G( f, 2&n)p <<\ :
n

m=0

[2&\(n&m)(n&m)&&1 E A
2 m( f )p] p*+

1�p*

(4)

for any natural number n.

From Theorem 1 and a generalization of discrete Hardy inequalities
we obtain the following Besov-type quasinorm equivalence theorem for
characterizing the smoothness of EA, .

p, q .

Theorem 2. Under the assumptions of Theorem 1, let . # 8 and .
satisfy Conditions (BS) and (Z%). Then for any finite subset G of Rd

+_
2Zd

+_Zd
+ , satisfying Conditions (i)�(iii) in Theorem 1, we have

EA, .
p, q =BG, .

p, q .

Moreover for functions f # EA, .
p, q ,

| f | Ep, q
A , . r | f | Bp, q

G , . .

Though the inequality (3) is of a form weaker than Jackson-type direct
approximation inequalities, it is sufficient for establishing the quasinorm
equivalence in Theorem 2. Moreover, the right-hand side of (3) is finite if
f has a small fixed Ho� lder smoothness =A, i.e., f # H =A

p for arbitrary small
=>0. From Theorem 1 it follows that we can construct a finite set G (with
&(G)=1) for which there holds the inequality (3) and the inequality

0G( f, 2&n)p <<\ :
n

m=0

[2&\(n&m)EA
2m( f )p] p*+

1�p*

. (5)
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This inequality may be considered as a multivariate modification of
the univariate inequality proved by Stechkin for p=2 and by Timan and
Timan for 1<p<� (see [15]). Some similar inequalities weaker than
(3)�(5) were obtained in [4] for the best h.c. approximation, and moduli
of smoothness considered by its authors.

Theorem 2 shows that for given p, q, ., and A, different sets G satisfying
the conditions of Theorem 2 determine the same space BG, .

p, q . Theorems 1
and 2 are restricted to the case where 1<p<�, A is a finite set, and .
satisfies Conditions (BS) and (Z%). It seems significantly more difficult to
treat the cases where p=1, � or�and A is a infinite set and . does not
satisfy Conditions (BS) and (Z%).

The methods employed in the proofs of Theorems 1 and 2 are further
development of those in the proofs of quasinorm equivalence theorems
for the Ho� lder and Besov spaces H A

p and BA
p, q of mixed smoothness

(cf. [6, 10]) and also of those in [4] which rest on the Littlewood�Paley
theorem and Marcinkiewicz multiplier theorem. In particular, our methods
can be considered as a refinement of the methods of [4] which involve also
some discrete Hardy inequalities.

The main results of the present paper were announced in [8].

3. AUXILIARY LEMMAS

For s # Zd
+ , we define the operator

$s f = :
k # gs

f� (k) ek

for f # Lp(Td), where gs :=[k # Zd : [2sj&1]�|kj |<2sj] ([a] denotes the
integer part of a), and f� (k) are the Fourier coefficients of f in the distribu-
tional sense.

Theorem 3 (Littlewood�Paley theorem, see e.g., [11]). The following
norm equivalence holds for f # Lp(Td), 1<p<�,

& f &p r"\ :
s # Z d

+

|$s f | 2+
1�2

"p
.

Lemma 1 [7]. Let [K(n)]�
k=0 be a sequence of subsets K(n)/Zd

+ such
that

Zd
+ / .

�

n=0

K(n),
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and let

fn= :
s # K(n)

$s f.

Then we have for f # Lp(Td), 1<p<�,

& f &p <<\ :
�

n=0

& fn& p*
p +

1�p*

.

The Marcinkiewicz multiplier theorem (see, e.g., [11]) gives sufficient
conditions on a sequence *=[*(k)]k # Z d for the Lp(Td)-boundedness of
the multiplier operator

4( f ) := :
k # Z d

*(k) f� (k) ek .

In what follows, *(k) will be called the multiplier coefficients of 4. We
formulate a slight modification of the Marcinkiewicz multiplier theorem
which immediately follows from this theorem and is more convenient for
our applications. We let

Qk :=[x # Rd : [2kj&1]�|xj |<2kj] for k # Zd
+

and

D(e) :=`
j # e

�
�xj

for e/J :=[1, ..., d].

Theorem 4. Let *=[*(k)]k # Z d be a sequence of values in Zd of a
function *(x) defined on Rd and satisfying the conditions

sup
x # R d

|*(x)|�M,

and for any s # Zd
+ and e/J

sup
x # Qs

|D(e) *(x)|�M `
j # e

2&sj.

Then the multiplier operator 4 with the multiplier coefficients *(k) is a
bounded operator on Lp(Td), 1<p<�, and for f # Lp(Td)

&4( f )&p�CM & f &p ,

where C depends only on p and *.
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We shall employ Theorem 4 to establish some properties of the operator
D#

t . We let 1=(1, 1, ..., 1) # Rd. For : # Rd
+ and '>0, we define

Z(:, ') :={_ gs : `
j # J:

sj {0, '&1�(:, s)<'= ,

U(:, ') :=[x # Rd
+: (:, x) �'+c] (c>0).

Lemma 2. Let 1<p<� and #=(:, r, ;) # Rd
+ _Zd

+_Zd
+ satisfy

Condition (R). Then for any !, '>0 and any f # P(Z(:, ')), we have

&D#
2 & ! f &p <<& f &p {2&\(!&')(!&'+1)&&1,

2&\$('&!)('&!+1)&$&1,
'�!
'�!,

where \=\(r&;, :), &=&(r&;, :) and \$=\(;&1, :), &$=&(;&1, :).

To prove Lemma 2 we need the following:

Lemma 3. Let :, ; # Rd
+ with :j , ;j>0. Then we have for any !�0

|
U(:, !)

2&(;, x) dxr2&\!(!+1)&&1,

where \=\(;, :), &=&(;, :).

Proof. It follows from a result in [5] that

|
U(:, !)

2&(;, x) dxr2&|!(!+1)m,

where |=min[(;, x) : x # U(:, 1)] and m is the dimension of the affine
hull of the set V=[x # U(:, 1) : (;, x)=|]. Therefore, to prove the
lemma it is sufficient to show that \=| and &=m+1. Without loss
of generality we can assume that \=;j�:j for 1� j�&. For x*=
(1�:1 , 0, ..., 0) # U(:, 1), we have (;, x*)=\. This means that \�|. Since
;&\: # Rd

+ , we have (;, x) =\(:, x)+(;&\:, x) �\(:, x)�\ for
any x # U(:, 1). This implies that |�\. Thus the equality \=| has been
proved. The equality &=m+1 follows from the equality V=[x # Rd

+ :
(x, 1)=1, xj $=0, &< j $�d]. Lemma 3 is proved.

Proof of Lemma 2. We shall consider only the case J:=J, because
the case J: {J can be reduced to the case J:=J for functions of d $
variables where d $=card J: . For the univariate operators 21

h and I 1
h , we

have (21
h f )@(k)=(2i sin kh�2) f� (k), (I 1

h f )@ (k)=(ikh)&1 f� (k) and (I 1
h f )@ (0)=0.
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Hence, a simple computation shows that $r
h I ;

h is a multiplier operator of
the form

2r
hI ;

h f = :
k # Zd

+h(k) f� (k) ek ,

where for x # Rd

+h(x)={
`
n

j=1

(2i sin xjhj �2)rj�(ihj xj)
;j,

0,

`
d

j=1

xj {0

`
d

j=1

xj=0.
(6)

For !, '>0, we define the multiplier operator 4!, ' by its multiplier coef-
ficients *!, '(k), k # Zd, which are the values at k of the function

*!, '(x) :={|$V:(2 & !)
+h(x) `

d

j=1

h&1
j dhj ,

0,

x # R(:, ')

otherwise,

(7)

where R(:, ') :=[ _ Qs : s # Nd, '&1�(:, s)<']. For any t, x # R such
that tx{0, we let gt(x) :=(tx)&b sina(tx�2) (a>b>1). Then we have the
estimates

| gt(x)|<<min( |tx|a&b, |tx|&b), (8)

| g$t(x)|<<x&1 min( |tx|a&b, |tx| 1&b). (9)

We shall use (8)�(9) to apply Theorem 4 to 4!, ' . By (6)�(8) we have for
any x # Qs /R(:, ')

|*!'(x)|<<|
$V: (2 & !)

`
d

j=1

min[(hj2
sj)rj&;j, (hj2

sj)&;j]
dhj

hj
.

Putting hj=2&yj, y=( y1 , ..., yd) in the right-hand side of this inequality,
we obtain

|*!, '(x)|<<|
H(:, !)

`
d

j=1

min[2r$j (sj& yj), 2&;j (sj& yj) dy], (10)

where H(:, !) :=[ y # Rd : !&1�(:, y)�!], r$j=rj&;j . If { :=!&'�0,
putting zj= yj&sj+!0 , j=1, ..., d, !0=1�(:, 1) in the right-hand side of
the last inequality, we get for any x # Qs /R(:, ')

|*!, '(x)|<<|
(:, z)�{

2&� d
j=1

max(r$j zj, &;j zj) dz=: J. (11)
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The integral J can be decomposed into a sum of the integrals

J= :
e/J

J (e), J (e) :=| 2(r*, z) dz, (12)

where the integral J (e) is taken over the set

{z # Rd
+: :

j # e

:jzj& :
j # e$

:jzj�8= , e$ :=J"e

for any e/J and rj*=r$j for j # e and rj*=&;j for j # e$. The integral J (e)
can be estimated as

J (e)�| 2(r*, z) dz=J1(e) J2(e),

where the integral is taken over the set [z # Rd
+: �j # e :jzj�{] and

J1(e)=|
zj�0

2&�j # e$ ;jzj `
j # e$

dzj ,

J2(e) :=|
U(:, e, {)

2&�j # e r$j zj `
j # e

dzj ,

with U(:, e, {)=[(zj) j # e : �j # e :jzj�{]. The integral J1(e) is an absolute con-
stant. The integral J2(e) is estimated by Lemma 3. J2(e)r2&\(e) {({+1)&(e)&1

with \(e) = min[r$j �:j : j # e] � \ and &(e) = card[ j # e : r$j �:j = \(e)] � &.
Therefore, we have J (e)<<2&\{({+1)&&1. This and (11)�(12) imply that

sup
x # R d

|*!, '(x)|<<2&\(!&')(!&'+1)&&1, !�'. (13)

If {='&!�0, putting zj=sj& yj&!0 , j=1, ..., d, in the right-hand side of
(10), we get for any x # Qs /R(:, ')

|*!, ' |<<|
(:, z)�{

2&� d
j=1

max(&r$j zj , ;jzj) dz.

Hence, similarly to (13) in the case !�', we can prove that

sup
x # R d

|*!, '(x)|<<2&\$('&!)('&!+1)&$&1, !�'. (14)

217BEST MULTIVARIATE APPROXIMATIONS



File: DISTIL 309214 . By:DS . Date:11:07:01 . Time:03:06 LOP8M. V8.0. Page 01:01
Codes: 2382 Signs: 1101 . Length: 45 pic 0 pts, 190 mm

Applying (9) to each variable, similarly to (10), we obtain for any e/J
and x/Qs /R(:, ')

|D(e) *!, '(x)|<<`
j # e

2&sj |
H(:, !)

`
d

j=1

min[2r$j (sj& yj), 2;$j(sj& yj)] dy, (15)

where ;$j=;j&1 for j # e, and =;j for j � e. The integral in (15) can be
estimated in the same way as the integral in (16). Thus we obtain the
inequality

sup
x # Qs

|D(e) *!, '(x)|<<`
j # e

2&sj {2&\(!&')(!&'+1)&&1,
2&\$('&!)('&!+1)&$&1,

'�!
'�!.

(16)

Applying Theorem 4 to the multiplier operator 4!, ' satisfying Conditions
(13)�(14) and (16), we arrive at the estimate

&4!, ' f &p <<& f &p {2&\(!&')(!&'+1)&&1,
2&\$('&!)('&!+1)&$&1,

'�!
'�!

for any f # Lp(Td). This implies the lemma, because D#
2 & ! f =4!, 'f for

f # P(Z(:, ')).

By a method similar to that in the proof of Theorem 2.6 in [4], we can
prove the following

Lemma 4. Let 1<p<� and #=(:, r, ;) # Rd
+_2Zd

+_Zd
+ satisfy

Condition (R). Then for any !>0 and any f # P(Z(:, !)),

& f &p <<&D#
2 & ! f &p .

If 0<q�� and . # 8, we define the norm &a&q, . for a sequence
a=[ak]k # Z as

&a&q, . :={\
:

k # Z

[ |ak |�.(2&k)]q+
1�q

,

sup
k # Z

[ |ak |�.(2&k)],

q<�

q=�.

The following lemma is a generalization of the discrete Hardy inequality
(see, e.g., [3, p. 27]).
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Lemma 5. Let 0<q��, & # R, . # 8 and . satisfy the Conditions (BS)
and (Z%). If the sequences a=[ak]k # Z and b=[bk]k # Z with ak , bk�0,
satisfy the condition

bk�M { :
s�k

as+2&%k :
s�k

2%s(k&s+1)& as= , (17)

then

&b&q, .�CM &a&q, . (18)

with C depending only on q, &, %, ..

Proof. We shall prove the case 1�q<� of this lemma. The other
cases can be proved with a slight modification. We will need a more con-
venient characterization of Conditions (BS) and (Z%) for our application.
It was proved in [2] that Conditions (BS) and (Z%) on the approximation
degree . are equivalent to the inequality

.(t) t&2`<<.(t$)(t$)&2`, t<t$, (19)

with some 0<2`<1, and the inequality

.(t) t&$<<.(t$)(t$)&$, t>t$, (20)

with some 0<$<\, respectively. From (20) it follows that . satisfies Con-
dition (Z%$) with any $<%$<%. Let the sequences a and b satisfy Condition
(17). If &{0, then a and b also satisfy (17) with M$=*M, $<%$<%, and
&$=0, where * is some absolute constant. This allows us to treat only the
case &=0. For the sake of simplicity we assume that M=1 in (17).
We shall, for the moment, use the abbreviated notation #n=1�.(2&n).
Condition (17) gives

&b&q, .�\ :
s # Z

#q
s \ :

k�s

ak+2&%s :
k�s

2%k ak+
q

+
1�q

=: J. (21)

We have

J�J1+J2 , (22)

where

Jq
1 := :

s # Z \#s2&%s :
k�s

2%kak +
q

, Jq
2 := :

s # Z \#s :
k�s

ak+
q

.
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We first estimate J1 . The Ho� lder inequality gives

:
k�s

2\kak�{ :
k�s

(2=k#kak)q=
1�q

{ :
k�s

(2($+=) k#&1
k )q$=

1�q$

,

where 1�q+1�q$=1, ==(\&$)�2>0, and $ is in (20). We have by (20)

{ :
k�s

(2($+=) k#&1
k )q$=

1�q$

<<#&1
s 2$s \ :

k�s

2q$=k+
1�q$

<<#&1
s 2($+=) s.

Therefore, Jq
1 can be estimated as

Jq
1 << :

s # Z

2&q=s :
k�s

(2=k#kak)q

= :
k # Z

(2=k#kak)q :
s�k

2&q=s<< :
k # Z

(#kak)q.

Thus, we have proved that

J1 <<&a&q, . . (23)

We next estimate J2 . Again, the Ho� lder inequality gives

:
k�s

ak�{ :
k�s

(2&`k#k ak)q=
1�q

{ :
k�s

(2`k#&1
k )q$=

1�q$

,

where ` is in (19). We have by (19)

{ :
k�s

(2`k#&1
k )q$=

1�q$

<<#&1
s 22`s \ :

k�s

2&q$`k+
1�q$

<<#&1
s 2`s.

Hence, we obtain

Jq
2 << :

s # Z

2q`s :
k�s

(2&`k#kak)q

= :
k�0

(2&`k#kak)q :
s�k

2q`s<< :
k�0

(#kak)q.

This means that J2 <<&a&q, . . Combining the last inequality and (21)�(23)
gives (18). The lemma is proved.
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4. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. For any %>0 and any natural number &�d, we
will construct a subset G of Rd

+_2Zd
+ _Rd

+ satisfying Conditions (i)�(iv)
in Theorem 1. Clearly, it is sufficient to do this for the case where A=[:]
for some : # Rd

+. Without loss of generality we can assume that J:=J
and 0<:1=:2= } } } =:s<:s+1� } } } �:d for some 0�s�d. Let b be a
natural number such that 1<b<[%:1]+1 and [%:1]+b+1 is an even
number. Then, we define ; # Nd by ;j=b, if 0� j�&, and ;j is any natural
number greater than one, and r # 2Nd by that rj=[%:1]+b+1, if
0� j�&, and rj is any even number such that (rj&;j)�:j>(r1&;1)�:1 and
(rj&;j)�:j�(ri&;i)�:i for any &<i< j�d if &< j�d. Obviously, the set
G=[(:, r, ;)] satisfies Conditions (i)�(iv) in Theorem 1.

Let us first prove the direct and inverse inequalities (3)�(4) for the
case where A=[:]. Suppose that G=[#=(:, r, ;)] is any set satisfying
Conditions (i)�(iv) in Theorem 1. For a nonnegative integer n, we define
the operators

Tn f := :
s # Un

$s f, Sn f := :
n

m=0

Tm f

for functions f # Lp(Td), where

U0 :={s # Zd
+: `

j # J:

sj=0= ,

Un :={s # Zd
+: `

j # J:

sj {0; n&1�(:, s) <n= , n�1.

From Theorem 3 it follows that f # Lp(Td) can be represented as the
series

f = :
�

n=0

Tn f

converging in the sense of Lp(Td). Moreover, Lemma 1 gives

& f &p<<\ :
�

n=0

&Tm f & p*
p +

1�p*

.

Since Tm f # P(Z(:, 2n)) and the operators Tm and D#
t commute, we have

by Lemma 4 and Theorem 3

&Tm f &p <<&D#
2 & m Tm f &p=&TmD#

2 & m f &p

<<&D#
2 & m f &p�0#( f, 2&m)p .
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Therefore, by the inclusion Sn f # P:
2 n we obtain the estimates

E :
2n( f )p �& f&Sn f &p

<<\ :
�

m=n+1

&Tm f & p*
p +

1�p*

<<\ :
�

m=n+1

[0#( f, 2&m)p] p*+
1�p*

(here and later, if in a notation A=[:], the brackets [ ] can be dropped).
This proves the case A=[:] of the direct inequality (3). Next, we will
prove this case of the inverse inequality (4). For a nonnegative integer n,
we define the operator

Pn f := :
s # Vn

$s f

for functions f # Lp(Td), where V0 :=U0 and

Vn :={s # Zd
+: `

j # J:

sj {0, n+n0&1�(:, s)<n+n0=
with n0=�j # J: :j . Similarly to the proof of (3), f can be represented as the
series

f = :
�

n=0

Pn f

converging in the sense of Lp(Td) and, moreover, we have

& f &p<<\ :
�

n=0

&Pn f & p*
p +

1�p*

. (24)

It is easy to verify the following inclusion for any nonnegative integer m:

1:(2
m)/ .

m

l=0

.
s # Vl

gs .

This implies that 1:(2m&1)�[�s # Ul
gs]=< for l�m. Hence, we have

$s( f &g)=$s f for any s # Vl , l�m, and g # P:
2m & 1 . Therefore, from

Theorem 3 it follows that for any g # P:
2m & 1 ,

& f& g&p >>" :
�

l=m \ :
s # Vl

|$s( f &g)| 2+
1�2

"p

="\ :
�

l=m

:
s # Vl

|$s f | 2+
1�2

"p
r&Pm f &p .
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Thus, we have proved the following inequality for any nonnegative integer m:

&Pm f &p <<E :
2m & 1( f )p . (25)

Let n&1�!�n for some natural number n. Because the operators D#
t and

Pm commute, from (24) we obtain that

&D#
2 & ! f &p<<\ :

n

m=1

&D#
2 & n Tm f & p*

p +
1�p*

+ :
�

m=n+1

&D#
2 & n Tm f &p .

The first sum is taken from 1 to n by virtue of identity D#
tP0 f#0. We have

by Lemma 2 and (25) for m�n,

&D#
2 & ! Pm f &p <<2&\(n&m)(n&m+1)&&1 &Pm f &p

<<2&\(n&m)(n&m+1)&&1 E :
2 m & 1( f )p ,

and, similarly, for m�n,

&D#
2 & ! Pm f &p<<2&\$(m&n)(m&n)&$&1 E :

2m & 1( f )p .

Therefore,

&D#
2 & ! f &p <<2&\n \ :

n

m=1

[2\m(n&m+1)&&1 E :
2m & 1( f )p] p*+

1�p*

+E :
2 n( f )p :

�

m=n+1

2&\$(m&n)(m&n)&$&1

<<2&\n \ :
n

m=0

[2\m(n&m+1)&&1 E :
2m( f )p] p*+

1�p*

<<Fn , (26)

where Fn denotes the right-hand side of (4). By using the nonincreasing
property of E :

2 m( f )p with respect to m, it is easy to verify the inequality
Fm <<Fn for all m and n with m�n. This and (26) imply the inequality (4)
for the case A=[:].

To prove (3)�(4) for the case where A is a finite set, we need the
following equivalences for any f # Lp(Td) and t>0:

0G( f, t)p rmax
# # G

0#( f, t)p , E A
t ( f )p rmax

: # A
E :

t ( f )p . (27)

The first equivalence (27) follows immediately from the definition and the
second from Theorem 1.6 in [14].
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We are now in position to prove the case where A is a finite set. By (27)
and the case A=[:], we have for any f # Lp(Td) and any nonnegative
integer n

E A
2 n( f )p rmax

: # A
E A

2n( f )p

<<max
: # A \ :

�

m=n+1

[0#( f, 2&m)p] p*+
1�p*

<<\ :
�

m=n+1

[max
# # G

0#( f, 2&m)p] p*+1�p*

r\ :
�

m=n+1

[0#( f, 2&m)p] p*+
1�p*

.

Thus, the direct inequality (3) in Theorem 1 is proved. The inverse
inequality (4) can be proved in a similar way.

Proof of Theorem 2. Theorem 1 implies that

E A
2n( f )p << :

�

m=n+1

0G( f, 2&m)p ,

0G( f, 2&n)p <<2&\n :
n

m=0

2\m(n&m+1)&&1 E A
2m( f )p .

Hence, by using Lemma 5, Theorem 2 can be proved in a way similar to
the proof of Theorem 1.1 in [4].
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